New rank detection methods for reduced-rank MIMO systems
نویسندگان
چکیده
منابع مشابه
Reduced-Rank Channel Estimation for Large-Scale MIMO Systems
We present two reduced-rank channel estimators for large-scale multiple-input, multiple-output (MIMO) systems and analyze their mean square error (MSE) performance. Taking advantage of the channel’s transform domain sparseness, the estimators yield outstanding performance and may offer additional mean angle-of-arrival (AoA) information. It is shown that, for the estimators to be effective, one ...
متن کاملAdaptive Minimum BER Reduced-Rank Linear Detection for Massive MIMO Systems
In this paper, we propose a novel adaptive reducedrank strategy for very large multiuser multi-input multi-output (MIMO) systems. The proposed reduced-rank scheme is based on the concept of joint iterative optimization (JIO) of filters according to the minimization of the bit error rate (BER) cost function. The proposed optimization technique adjusts the weights of a projection matrix and a red...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولAdaptive Reduced-Rank MBER Linear Receive Processing for Large Multiuser MIMO Systems
In this work, we propose a novel adaptive reduced-rank strategy based on joint interpolation, decimation and filtering (JIDF) for large multiuser multiple-input multiple-output (MIMO) systems. In this scheme, a reduced-rank framework is proposed for linear receive processing and multiuser interference suppression according to the minimization of the bit error rate (BER) cost function. We presen...
متن کاملAnalysis of Some Methods for Reduced Rank Gaussian Process Regression
While there is strong motivation for using Gaussian Processes (GPs) due to their excellent performance in regression and classification problems, their computational complexity makes them impractical when the size of the training set exceeds a few thousand cases. This has motivated the recent proliferation of a number of cost-effective approximations to GPs, both for classification and for regr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Wireless Communications and Networking
سال: 2015
ISSN: 1687-1499
DOI: 10.1186/s13638-015-0457-4